EE 330 Lecture 42

Digital Circuits

- Propagation Delay with Various Sizing
- Optimally driving large capacitive loads
- Logic Effort Method for Signal Propagation

Spring 2024 Exam Schedule

Exam 1 Friday Feb 16
Exam 2 Friday March 8
Exam 3 Friday April 19
Final Exam Tuesday May 7 7:30 AM - 9:30 AM

Overdrive Factors

Scaling widths of ALL devices by constant ($\mathbf{W}_{\text {scaled }}=W x O D$) will change "drive" capability relative to that of the reference inverter but not change relative value of $t_{H L}$ and $t_{L H}$

$$
\begin{gathered}
\mathrm{R}_{\mathrm{PD}}=\frac{\mathrm{L}_{1}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{1}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{Tn}}\right)} \\
\mathrm{R}_{\mathrm{PU}}=\frac{\mathrm{L}_{2}}{\mu_{\mathrm{P}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{2}\left(\mathrm{~V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{TP}}\right)}
\end{gathered}
$$

$$
\mathrm{R}_{\mathrm{PDOD}}=\frac{\mathrm{L}_{1}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{Ox}}\left[\mathrm{OD} \bullet \mathrm{~W}_{1}\right]\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{Tn}}\right)}=\frac{\mathrm{R}_{\mathrm{PD}}}{\mathrm{OD}}
$$

$$
\mathrm{R}_{\text {PUOD }}=\frac{\mathrm{L}_{2}}{\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{OX}}\left[\mathrm{OD} \bullet \mathrm{~W}_{2}\right]\left(\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{TP}}\right)}=\frac{\mathrm{R}_{\mathrm{PU}}}{\mathrm{OD}}
$$

$$
t_{\text {PROP }}=t_{\text {REF }} \bullet \mathrm{FI}_{\mathrm{L}} \bullet \frac{1}{\mathrm{OD}}
$$

Scaling widths of ALL devices by constant will change $\mathrm{Fl}_{\mathrm{IN}_{\mathrm{N}}}$ to gate by OD

$$
\mathrm{C}_{\text {IN }}=\mathrm{C}_{\mathrm{Ox}}\left(\mathrm{~W}_{1} \mathrm{~L}_{1}+\mathrm{W}_{2} \mathrm{~L}_{2}\right)
$$

$$
\mathrm{C}_{\mathbb{N} O D}=\mathrm{C}_{0 \mathrm{OX}}\left(\left[\begin{array}{lll}
\mathrm{O} & \left.\mathrm{~W} \cdot \mathrm{~W}_{1}\right] \mathrm{L}_{1}+[\mathrm{O} & \left.\left.\mathrm{D} \cdot \mathrm{~W}_{2}\right] \mathrm{~L}_{2}\right)=\mathrm{O} \mathrm{D} \bullet \mathrm{C}_{\mathbb{N}} .
\end{array}\right.\right.
$$

Review from Last Time

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Asymmetric Overdrive

When propagating through \mathbf{n} stages:

F_{ik} denotes the total loading on stage k which is the sum of the F_{1} of all loading on stage k

$$
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \cdot\left(\frac{1}{\mathbf{2}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{F}_{\mathrm{l}(\mathrm{k}+1)}\left(\frac{1}{\mathbf{O D _ { \text { HLK } }}}+\frac{\mathbf{1}}{\mathbf{O D _ { \text { LHK } }}}\right)\right)
$$

Review from Last Time

Propagation Delay with Over-drive Capability

Example

Compare the propagation delays. Assume the OD is 900 in the third case and 30 in the fourth case. Don't worry about the extra inversion at this time.

$$
\begin{aligned}
& t_{\text {PROP }}=900 t_{\text {REF }} \\
& t_{\text {PROP }}=t_{\text {REF }}+900 t_{\text {REF }}=901 t_{\text {REF }} \\
& t_{\text {PROP }}=900 t_{\text {REF }}+t_{\text {REF }}=901 t_{\text {REF }} \\
& t_{\text {PROP }}=30 t_{\text {REF }}+30 t_{\text {REF }}=60 t_{\text {REF }}
\end{aligned}
$$

- Dramatic reduction in $t_{\text {PROP }}$ is possible (input is driving same in all 3 cases)
- Will later determine what optimal number of stages and sizing is

Will consider an example with the five cases

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

Propagation Delay in Multiple-Levels of Logic with Stage Loading and Overdrives

Will now consider A to F propagation for this circuit as an example with different overdrives

Propagation Delay in MultipleLevels of Logic with Stage Loading

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive

$$
\begin{aligned}
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \mathrm{Fl}_{(k+1)} \\
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{F_{l(k+1)}}{O D_{k}}
\end{aligned}
$$

- Minimum Sized

$$
t_{\text {PROP }}=?
$$

- Asymmetric Overdrive

$$
\begin{gathered}
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\mathrm{REF}} \cdot\left(\frac { 1 } { \mathbf { 2 } } \sum _ { \mathrm { k } = 1 } ^ { \mathrm { n } } \mathbf { F } _ { \mathrm { l } (\mathrm { k } + 1) } \left(\frac{1}{\left.\left.\mathbf{O D _ { \mathrm { HLk } }}+\frac{1}{O D_{\mathrm{LHk}}}\right)\right)} \begin{array}{c}
\mathbf{t}_{\mathrm{PROP}}=?
\end{array}\right.\right. \text { ? }
\end{gathered}
$$ minimum size and overdrive

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Equal rise-fall gates, no overdrive

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Equal rise-fall gates, no overdrive

Equal rise-fall gates, no overdrive

> In $0.5 \mathrm{uproc} \mathrm{t}_{\mathrm{REF}}=20 \mathrm{ps}$, $\mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$
(Note: This C_{Ox} is somewhat larger than that in the 0.5 u ON process)

Equal rise-fall gates, no overdrive

> In $0.5 \mathrm{uproc} \mathrm{t}_{\text {REF }}=20 \mathrm{ps}$, $\mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$
(Note: This C_{Ox} is somewhat larger than that in the 0.5 u ON process)

$$
t_{\text {PROP }}=32.5 t_{\text {REF }}
$$

How does this propagation delay compare to that required for a propagation of a signal through 5 -levels of logic with only reference inverters (load is a ref inverter instead of 50 fF as well)?

Loading can have a dramatic effect on propagation delay

Propagation Delay in MultipleLevels of Logic with Stage Loading

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive

$$
\begin{aligned}
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \mathrm{Fl}_{(k+1)} \\
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{F_{(k+1)}}{O D_{k}}
\end{aligned}
$$

- Minimum Sized
- Asymmetric Overdrive

$$
\begin{gathered}
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \bullet\left(\frac { 1 } { \mathbf { 2 } } \sum _ { \mathrm { k } = 1 } ^ { \mathrm { n } } \mathbf { F } _ { (\mathrm { lk } + 1) } \left(\frac{1}{\left.\left.\mathbf{O D _ { \text { HLk } }}+\frac{\mathbf{1}}{\mathbf{O D _ { \text { LHk } }}}\right)\right)} \begin{array}{c}
\mathbf{t}_{\text {PROP }}=?
\end{array}\right.\right. \text { ? }
\end{gathered}
$$ minimum size and overdrive

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Equal rise-fall gates, with overdrive

$$
\mathbf{t}_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{REF}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\mathrm{~F}_{\mathrm{k}+1}}{\mathrm{OD}_{k}}
$$

In 0.5 u proc $\mathrm{t}_{\mathrm{REF}}=20 \mathrm{ps}$, $\mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$
(Note: This C_{ox} is somewhat larger than that in the 0.5 u ON process)

$$
\frac{\mathbf{t}_{\mathrm{PROP}}}{\mathbf{t}_{\mathrm{REF}}}=\sum_{\mathbf{k}=1}^{\mathrm{n}} \frac{\mathbf{F}_{\mathrm{I}_{\mathrm{k}+1}} \mathbf{O D}_{k}}{}
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Equal rise-fall gates, with overdrive

	Equal Rise/Fall	Equal Rise/Fall (with OD)
$\mathrm{C}_{\text {IN }} / \mathrm{C}_{\text {REF }}$		
Inverter	1	OD
NOR	$\frac{3 k+1}{4}$	$\frac{3 k+1}{4} \cdot \mathrm{OD}$
NAND	$3+\mathrm{k}$	$3+\mathrm{k}$
	4	$4 \cdot$ OD
Overdrive		
Inverter		
HL	1	OD
LH	1	OD
NOR		
HL	1	OD
LH	1	OD
$\underset{H L}{\text { NAND }}$	1	OD
LH	1	OD
$t_{\text {PROP }} / t_{\text {REF }}$	$\sum_{k=1}^{n} \mathbf{F}_{1(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{O D_{k}}$

Equal rise-fall gates, with overdrive

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Minimum-sized gates

[^0]$$
\mathrm{t}_{\text {PROP }}=\mathrm{t}_{\mathrm{REF}} \bullet ?
$$

Propagation Delay in MultipleLevels of Logic with Stage Loading

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive

$$
\begin{aligned}
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} F I_{(k+1)} \\
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{F_{(k+1)}}{O D_{k}} \\
& \mathbf{t}_{\text {PROP }}=?
\end{aligned}
$$

- Minimum Sized
- Asymmetric Overdrive

$$
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \bullet\left(\frac{1}{\mathbf{2}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{F}_{\mathrm{I}(\mathrm{k}+1)}\left(\frac{1}{\mathbf{O D _ { \text { HLk } }}}+\frac{\mathbf{1}}{\mathbf{O D _ { \text { LHk } }}}\right)\right)
$$

- Combination of equal rise/fall, minimum size and overdrive

$$
\mathbf{t}_{\mathrm{PROP}}=?
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Minimum-sized gates

Observe that a minimum-sized gate is simply a gate with asymmetric overdrive

Propagation Delay with Minimum-Sized Gates

Recall propagation delay for asymmetric overdrive:

$$
\mathbf{t}_{\mathrm{PROP}}=\mathbf{t}_{\mathrm{REF}} \bullet\left(\frac{1}{2} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{F}_{\mathrm{l}(\mathrm{k}+1)}\left(\frac{1}{\mathrm{OD}_{\mathrm{HLk}}}+\frac{1}{O D_{\mathrm{LHk}}}\right)\right)
$$

Thus for minimum-sized devices:

$$
\frac{\mathbf{t}_{\mathrm{PROP}}}{\mathbf{t}_{\mathrm{REF}}}=\left(\frac{1}{2} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{F}_{\mathrm{l}(\mathrm{k}+1)}\left(\frac{1}{O D_{\mathrm{HLk}}}+\frac{1}{O D_{\mathrm{LHk}}}\right)\right)
$$

- Still need $O D_{H L}$ and $O D_{\text {LH }}$ for minimum-sized gates
- Still need Fl for minimum-sized gates

Propagation Delay with minimum-sized gates

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Minimum-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized
$\mathrm{Cin}_{\text {IN }} / \mathrm{C}_{\text {REF }}$			
Inverter	1	OD	
NOR	$\frac{3 \mathrm{k}+1}{4}$	$\frac{3 k+1}{4} \cdot O D$	
NAND	3+k	3+k	
NAND	4	$4 \cdot$ OD	
Overdrive			
Inverter			
HL	1	OD	
LH	1	OD	
NOR			
HL	1	OD	
LH	1	OD	
NAND HL	1	OD	
LH	1	OD	
$t_{\text {PROP }} / t_{\text {REF }}$	$\sum_{k=1}^{n} F_{l(k+1)}$	$\sum_{k=1}^{n} \frac{\mathbf{F}_{(k+1)}}{} \frac{D_{k}}{}$	

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Minimum-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized
$\mathrm{C}_{\text {IN }} / \mathrm{C}_{\text {REF }}$			
Inverter	1	OD	1/2
NOR	$\frac{3 \mathrm{k}+1}{4}$	$\frac{3 k+1}{4} \cdot$ OD	1/2
NAND	$\frac{3+\mathrm{k}}{4}$	$\frac{3+\mathrm{k}}{4} \cdot \mathrm{OD}$	1/2
Overdrive			
Inverter HL	1	OD	1
LH	1	OD	1/3
NOR			
HL	1	OD	1
LH	1	OD	1/(3k)
NAND HL	1	OD	1/k
LH	1	OD	1/3
$t_{\text {PROP }} / t_{\text {REF }}$	$\sum_{k=1}^{n} F_{(k+1)}$	$\sum_{k=1}^{n} \frac{F_{(k+1)}}{O D_{k}}$	$\frac{1}{2} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{F}_{\text {(k+1) }}\left(\frac{1}{\mathrm{OD}_{\text {HLk }}}+\frac{1}{O \mathrm{O}_{\text {LHk }}}\right)$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Minimum-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized
$\mathrm{CIN}_{\text {/ }} \mathrm{C}_{\text {REF }}$			
Inverter	1	OD	1/2
NOR	$\frac{3 k+1}{4}$	$\frac{3 k+1}{4} \cdot \mathrm{OD}$	1/2
NAND	$3+\mathrm{k}$	$\frac{3+\mathrm{k}}{4}$. OD	$1 / 2$
NAND	4	4.00	$1 / 2$
Overdrive			
Inverter HL	1	OD	1
LH	1	OD	1/3
NOR			
HL	1	OD	1
LH	1	OD	1/(3k)
$\underset{\text { NAND }}{\text { HL }}$	1	OD	1/k
LH	1	OD	1/3
$\mathrm{t}_{\text {PRop }} / \mathrm{t}_{\text {REF }}$	$\sum_{k=1}^{n} F_{1(k+1)}$	$\sum_{k=1}^{n} \sum_{i(k+1)} \frac{D_{k}}{}$	$\frac{1}{2} \sum_{k=1}^{n} F_{k(k+1)}\left(\frac{1}{O D_{\text {HLk }}}+\frac{1}{O O_{L H k}}\right)$

Propagation Delay in MultipleLevels of Logic with Stage Loading

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive

$$
\begin{aligned}
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \mathrm{Fl}_{(k+1)} \\
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{F_{l(k+1)}}{O D_{k}}
\end{aligned}
$$

- Minimum Sized

$$
\begin{aligned}
& \mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \bullet\left(\frac{1}{\mathbf{2}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{F}_{(\mathrm{lk}+1)}\left(\frac{1}{\mathrm{OD}_{\mathrm{HLk}}}+\frac{\mathbf{1}}{\mathbf{O D}_{\text {LHk }}}\right)\right) \\
& \mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \bullet\left(\frac{1}{\mathbf{2}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{F}_{\mathrm{l}(\mathrm{k}+1)}\left(\frac{1}{\mathbf{O D}_{\text {HLk }}}+\frac{\mathbf{1}}{\mathbf{O D _ { \text { LHk } }}}\right)\right)
\end{aligned}
$$

- Combination of equal rise/fall, minimum size and overdrive

$$
t_{\text {PROP }}=?
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Asymmetric-sized gates

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Asymmetric-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized	$\underset{\left(O D_{\text {HL }}, O D_{\text {LH }}\right)}{\text { Asymmetric } O D}$
$\mathrm{Clin}^{\prime} \mathrm{C}_{\text {ref }}$				
Inverter	1	OD	1/2	$?$
NOR	$\frac{3 k+1}{4}$	$\frac{3 k+1}{4} \cdot$ OD	1/2	$?$
NAND	$\frac{3+\mathrm{k}}{4}$	$\frac{3+\mathrm{k}}{4} \cdot \mathrm{OD}$	1/2	$?$
Overdrive				
Inverter				
LH 1 OD $1 / 3$				
$\underset{\mathrm{NOR}}{\mathrm{HL}}$	1	OD	1	OD HL
LH	1	OD	1/(3k)	$\mathrm{OD}_{\text {LH }}$
NAND				
LH	1	OD	1/3	$\mathrm{OD}_{\text {LH }}$
$\mathrm{t}_{\text {PROP }} / \mathrm{t}_{\text {REF }}$	$\sum_{k=1}^{n} F_{1(k+1)}$	$\sum_{k=1}^{n} \frac{F_{(k+1)}}{O D_{k}}$	$\frac{1}{2} \sum_{k=1}^{n} F_{i(k+1)}\left(\frac{1}{O D_{\text {HLK }}}+\frac{1}{O D_{\text {LHK }}}\right)$	$\frac{1}{2} \sum_{k=1}^{n} F_{(k+1)}\left(\frac{1}{O D_{\text {HLK }}}+\frac{1}{O D_{\text {LHk }}}\right)$
	$t_{\text {PROP }}=t^{\text {a }}$	- $\left(\frac{1}{2} \sum_{k=1}^{5} \mathrm{~F}_{1(k+1)}\left(\frac{}{O}\right.\right.$	$\left.\left.\frac{(}{H L L}+\frac{1^{\text {t }}}{O D_{\text {LHKk }}}\right)\right)$	

Asymmetric-sized gates
 $C_{I N} / C_{\text {REF }}$

Inverter

NOR

NAND

Asymmetric-sized gates
 $C_{I N} / C_{\text {REF }}$

Inverter

$$
\frac{C_{\text {IN }}}{C_{\text {REF }}}=\frac{C_{o x} W_{n} O D_{H L} L+C_{o x}\left(3 W_{n}\right) O D_{L H} L}{4 C_{o x} W_{n} L}=\frac{O D_{\text {HL }}+3 O D_{L H}}{4}
$$

NOR

$$
\frac{\mathrm{C}_{I N}}{\mathrm{C}_{\text {REF }}}=\frac{\mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\mathrm{n}} O D_{\text {HL }} \mathrm{L}+\mathrm{C}_{\mathrm{OX}}\left(3 \mathrm{~kW}_{n}\right) \mathrm{OD}_{\mathrm{LH}} \mathrm{~L}}{4 \mathrm{C}_{\mathrm{ox}} \mathrm{~W}_{\mathrm{n}} \mathrm{~L}}=\frac{\mathrm{OD}_{\mathrm{HL}}+3 \mathrm{kOD}_{\mathrm{LH}}}{4}
$$

NAND

$$
\frac{C_{\mathbb{N}}}{C_{\text {REF }}}=\frac{C_{o x} k W_{n} O D_{H H} L+C_{o x}\left(3 W_{n}\right) O D_{L H} L}{4 C_{o x} W_{n} L}=\frac{k \cdot O D_{H L}+3 O D_{\mathrm{LH}}}{4}
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Asymmetric-sized gates

	Equal Rise/Fall	$\underset{\substack{\text { Equal Rise/Fall } \\ \text { (with OD) }}}{ }$	Minimum Sized	$\underset{\text { Asymmetric OD }}{\text { (ODHL, ODLH) }}$
$\mathrm{CIN}_{1 /} / \mathrm{C}_{\text {ref }}$				
Inverter	1	OD	1/2	$\underline{O D_{H L}+3 \cdot O D_{\text {LH }}}$
	$\frac{3 k+1}{4}$	$\frac{3 \mathrm{k}+1}{4}$. OD		
NOR	4	$\frac{3+1}{4} \cdot \mathrm{OD}$	1/2	$\frac{\mathrm{OD}_{\mathrm{HL}}+3 \mathrm{k} \cdot \mathrm{OD}_{\mathrm{LH}}}{4}$
NAND	$\frac{3+k}{4}$	$\frac{3+\mathrm{k}}{4} \cdot \mathrm{OD}$	1/2	$\underline{\mathrm{k}} \cdot \mathrm{OD}_{\mathrm{HL}}{ }^{4} 3 \cdot \mathrm{OD}_{\text {LH }}$
				4
Overdrive				
Inverter				
HL	1	OD	1	OD HL
LH	1	OD	1/3	$\mathrm{OD}_{\text {LH }}$
NOR				
HL	1	OD	1	OD HL
LH	1	OD	1/(3k)	OD ${ }_{\text {LH }}$
NAND				OD ${ }_{\text {HL }}$
LH	1	OD	1/3	$\mathrm{OD}_{\text {LH }}$
$\mathrm{t}_{\text {PROP }} / \mathrm{t}_{\text {REF }}$	$\sum_{k=1}^{n} F_{1(k+1)}$	$\sum_{k=1}^{n} \frac{F_{(k+1)}}{O_{k}}$	$\frac{1}{2} \sum_{k=1}^{n} F_{l k+1)}\left(\frac{1}{O D_{\text {HLK }}}+\frac{1}{O D_{\text {LHK }}}\right)$	$\frac{1}{2} \sum_{k=1}^{n} F_{\text {IV }}{ }^{(k+1)}\left(\frac{1}{O D_{\text {HLK }}}+\frac{1}{O D_{\text {LHK }}}\right)$
	$\mathrm{t}_{\text {PROP }}=\mathrm{t}_{\text {R }}$	$\text { - }\left(\frac{1}{2} \sum_{k=1}^{5} F_{l(k+1)}\right)$	$\left.\frac{-}{\text { LLk }}+\frac{1}{O D_{\text {LHK }}}\right)$)	

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Asymmetric-sized gates

(Note: This C_{ox} is somewhat larger than that in the 0.5 u ON process)

Propagation Delay in MultipleLevels of Logic with Stage Loading

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive

$$
\begin{aligned}
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \mathrm{Fl}_{(k+1)} \\
& t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{F_{(k+1)}}{O D_{k}}
\end{aligned}
$$

- Minimum Sized

$$
\begin{aligned}
& \mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \bullet\left(\frac{1}{2} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{F}_{\mathrm{I}(\mathrm{k}+1)}\left(\frac{1}{\mathbf{O D}_{\mathrm{HLK}}}+\frac{\mathbf{1}}{\mathbf{O D}_{\mathrm{LHk}}}\right)\right) \\
& \mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \bullet\left(\frac{1}{\mathbf{2}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{F}_{\mathrm{l}(\mathrm{k}+1)}\left(\frac{1}{\mathbf{O D _ { \mathrm { HLK } }}}+\frac{\mathbf{1}}{\mathbf{O D _ { \text { LHk } }}}\right)\right)
\end{aligned}
$$

- Combination of equal rise/fall, minimum size and overdrive

$$
t_{\text {PROP }}=?
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Mixture of Minimum-sized gates, equal rise/fall gates and OD

Driving Notation

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive
- Minimum Sized

- Asymmetric Overdrive

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Mixture of Minimum-sized gates, equal rise/fall gates and OD

$$
\mathrm{t}_{\text {PROP }}=\mathrm{t}_{\text {REF }} \cdot\left(\frac{1}{\mathbf{2}} \sum_{\mathrm{k}=1}^{5} \mathrm{~F}_{\mathrm{l}(\mathrm{k}+1)}\left(\frac{1}{O D_{\text {HLk }}}+\frac{1}{O D_{\text {LHk }}}\right)\right)
$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Mixture of Minimum-sized gates, equal rise/fall gates and OD

Propagation Delay in MultipleLevels of Logic with Stage Loading

- Equal rise/fall (no overdrive)

$$
\mathrm{t}_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{REF}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{Fl}_{(\mathrm{k}+1)}
$$

- Equal rise/fall with overdrive

$$
t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{F_{(k+1)}}{O D_{k}}
$$

- Minimum Sized

$$
\mathrm{t}_{\text {PROP }}=\mathrm{t}_{\text {REF }} \cdot\left(\frac{\mathbf{1}}{\mathbf{2}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~F}_{\mathrm{l}(\mathrm{k}+1)}\left(\frac{1}{\mathbf{O D _ { \text { HLk } }}}+\frac{\mathbf{1}}{\mathbf{O D _ { \text { LHk } }}}\right)\right)
$$

- Asymmetric overdrive

$$
\mathrm{t}_{\text {PROP }}=\mathrm{t}_{\text {REF }} \cdot\left(\frac{1}{2} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~F}_{\mathrm{I}(\mathrm{k}+1)}\left(\frac{1}{\mathbf{O D _ { \text { HLK } }}}+\frac{1}{\mathbf{O D _ { \text { LHK } }}}\right)\right)
$$

- Combination of equal rise/fall, minimum size and overdrive

Summary: Propagation Delay in MultipleLevels of Logic with Stage Loading

Equal Rise/Fall (with OD)	Minimum Sized	Asymmetric OD ($\left.O D_{\text {нц, }} \mathrm{OD}_{\text {เн }}\right)$
OD	1/2	$\mathrm{OD}_{\mathrm{HL}}+3 \cdot \mathrm{OD}_{\mathrm{LH}}$
$\frac{3 k+1}{4} \cdot \mathrm{OD}$	1/2	$\begin{gathered} \hline 4 \\ \mathrm{OD}_{\mathrm{HL}}+3 \mathrm{k} \cdot \mathrm{OD}_{\mathrm{LH}} \end{gathered}$
$\frac{3+\mathrm{k}}{4} \cdot \mathrm{OD}$	1/2	$\frac{4}{\mathrm{k} \cdot \mathrm{OD}_{\mathrm{HL}}+3 \cdot \mathrm{OD}_{\mathrm{LH}}}$
OD	1	$\mathrm{OD}_{\mathrm{HL}}$
OD	1/3	$\bigcirc D_{\text {LH }}$
OD	1	$\mathrm{OD}_{\mathrm{HL}}$
OD	1/(3k)	$\bigcirc D_{\text {LH }}$
OD	1/k	$\mathrm{OD}_{\mathrm{HL}}$
OD	1/3	$\bigcirc D_{\text {LH }}$
$\sum_{k=1}^{n} \frac{F_{(k+1)}}{O D_{k}}$	$\frac{1}{2} \sum_{k=1}^{n} \mathrm{~F}_{(k+1)}\left(\frac{1}{O D_{\text {HLk }}}+\frac{1}{O D_{\text {LHK }}}\right)$	$\frac{\mathbf{1}}{\mathbf{2}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~F}_{(\mathrm{lk}+1)}\left(\frac{1}{\mathbf{O D _ { \text { HLk } }}}+\frac{\mathbf{1}}{\mathbf{O D _ { \text { LHK } }}}\right)$

Digital Circuit Design

Hierarchical Design
Basic Logic Gates
Properties of Logic Families
Characterization of CMOS Inverter
Static CMOS Logic Gates
Ratio Logic
Propagation Delay

- Simple analytical models

FI/OD

- Logical Effort
- Elmore Delay

Sizing of Gates
\Rightarrow The Reference Inverter
done
partial

Driving Large Capacitive Loads

Example

[^1]$$
t_{\text {PROP }}=?
$$

[^2]
Driving Large Capacitive Loads

Example

Assume $\mathrm{C}_{\mathrm{L}}=1000 \mathrm{C}_{\text {REF }}$
$t_{\text {PROP }}=1000 t_{\text {REF }}$
$t_{\text {PROP }}$ is too long !

[^3]
Driving Large Capacitive Loads

Example

Assume $\mathrm{C}_{\mathrm{L}}=\mathbf{1 0 0 0}_{\text {REF }}$

Assume first stage is a reference inverter

$$
\begin{gathered}
\mathbf{t}_{\text {PROP }}=? \\
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \sum_{\mathrm{k}=1}^{2} \frac{\mathbf{F}_{\text {I(k+1) }}}{\mathbf{O D}}{ }_{\mathbf{k}} \\
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }}\left(\frac{1}{1} 1000+\frac{1}{1000} 1000\right)=\mathbf{t}_{\text {REF }}(1000+1) \\
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }}(1001)
\end{gathered}
$$

Delay of second inverter is really small but overall delay is even longer than before!

Driving Large Capacitive Loads

Example

Assume $\mathrm{C}_{\mathrm{L}}=1000 \mathrm{C}_{\text {REF }}$

$$
\begin{gathered}
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \sum_{\mathrm{k}=1}^{3} \frac{\mathbf{F}_{\mathbf{l}(\mathrm{k}+1)}}{\mathbf{O D}} \\
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }}\left(\frac{1}{1} 10+\frac{1}{10} 100+\frac{1}{100} 1000\right)=\mathbf{t}_{\text {REF }}(10+10+10) \\
\mathbf{t}_{\text {PROP }}=\mathbf{3 0} \mathbf{t}_{\text {REF }}
\end{gathered}
$$

Dramatic reduction is propagation delay (over a factor of 30!)
What is the fastest way to drive a large capacitive load?

Optimal Driving of Capacitive Loads

Need to determine the number of stages, n , and the OD factors for each stage to minimize $\mathrm{t}_{\text {PROP }}$.

$$
\begin{aligned}
& t_{\text {PROP }}=t_{R E F} \sum_{k=1}^{n} \frac{F_{(k+1)}}{O D_{k}} \longrightarrow t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{\theta_{k}}{\theta_{k-1}} \\
& \text { where } \boldsymbol{\theta}_{0}=\mathbf{1}, \boldsymbol{\theta}_{n}=C_{L} / C_{\text {REF }}
\end{aligned}
$$

This becomes an n-parameter optimization (minimization) problem!
Unknown parameters: $\quad\left\{\theta_{1}, \theta_{2}, \ldots \theta_{\mathrm{n}-1}, \mathrm{n}\right\}$

Optimal Driving of Capacitive Loads

Assume first stage is a

$$
t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} \frac{\theta_{k}}{\theta_{k-1}}
$$

 reference inverter

Order reduction strategy: Assume overdrive of stages increases by the same factor clear until the load

This becomes a 2-parameter optimization (minimization) problem! Unknown parameters: $\{\theta, \mathrm{n}\}$

One degree of freedom
One constraint : $\theta^{n} C_{R E F}=C_{L}$

Optimal Driving of Capacitive Loads

Thus obtain an expression for $t_{\text {PROP }}$ in terms of only $\boldsymbol{\theta}$

$$
t_{\text {PROP }}=t_{\text {REF }} \frac{\theta}{\ln (\theta)}\left[\ln \frac{C_{L}}{C_{R E F}}\right]
$$

Optimal Driving of Capacitive Loads

It suffices to minimize the function $f(\theta)=\frac{\theta}{\ln (\theta)}$

$$
\frac{\mathrm{df}}{\mathrm{~d} \theta}=\frac{\ln (\theta)-\theta \cdot\left(\frac{1}{\theta}\right)}{(\ln (\theta))^{2}}=0
$$

$$
\ln (\theta)-1=0 \quad \rightarrow \quad \theta=\mathrm{e}
$$

$$
n=\frac{1}{\ln (\theta)} \ln \left(\frac{C_{L}}{C_{R E F}}\right) \rightarrow n=\ln \left(\frac{C_{L}}{C_{R E F}}\right)=\ln \left(F I_{L}\right)
$$

Optimal Driving of Capacitive Loads

$$
\begin{aligned}
& \theta_{\text {OPT }}=e \\
& n_{O P T}=\ln \left(\frac{C_{L}}{C_{R E F}}\right)=\ln \left(F I_{L}\right) \\
& t_{\text {PROP }}=t_{\text {REF }} \frac{\theta}{\ln (\theta)}\left[\ln \frac{C_{L}}{C_{R E F}}\right] \quad t_{\text {PROP }}=t_{\text {REF }} e\left[\ln \frac{C_{L}}{C_{\text {REF }}}\right]=n e t_{\text {REF }}
\end{aligned}
$$

- Since $\theta_{\text {OPT }}=e$ is an irrational number, snap-size limitations in layout tools make it impossible to use the optimal scaling factor (even if \mathbf{n} comes out to be an integer).
- Need a practical solution

Optimal Driving of Capacitive Loads

A practical solution

- minimum at $\theta=e$ but shallow inflection point for $2<\theta<3$
- practically pick $\theta=2, \theta=2.5$, or $\theta=3$
- since optimization may provide non-integer for n, must pick close integer

Optimal Driving of Capacitive Loads

- Often termed a pad driver
- Often used to drive large internal busses as well
- Generally included in standard cells or in cell library
- Device sizes can become very large
- Odd number of stages will cause signal inversion but usually not a problem

Optimal Driving of Capacitive Loads

Example: Design a pad driver for driving a load capacitance of 10 pF with equal rise/fall times, determine $\mathrm{t}_{\text {PROP }}$ for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter.

$$
\begin{aligned}
& \text { In 0.5u proc } t_{\text {REF }}=20 \mathrm{ps}, \\
& \mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\mathrm{PDREF}}=2.5 \mathrm{~K}
\end{aligned} \quad \mathrm{FI}_{\mathrm{L}}=2500
$$

$$
\mathrm{n}_{\mathrm{OPT}}=\ln \left(\frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\mathrm{REF}}}\right)=\ln \left(\frac{10 \mathrm{pF}}{4 \mathrm{fF}}\right)=\ln (2500)=7.8
$$

Select $\mathrm{n}=8, \boldsymbol{\theta}=\mathbf{2} .5$

$$
W_{\mathrm{nk}}=2.5^{\mathrm{k}-1} \cdot \mathrm{~W}_{\mathrm{REF}}, \quad \mathrm{~W}_{\mathrm{pk}}=3 \cdot 2.5^{\mathrm{k}-1} \cdot \mathrm{~W}_{\mathrm{REF}}
$$

Optimal Driving of Capacitive Loads

Example: Design a pad driver for driving a load capacitance of 10pF with equal rise/fall times, determine $\mathrm{t}_{\text {PROP }}$ for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter.

$$
\begin{aligned}
& \text { In } 0.5 \mathrm{u} \text { proc } \mathrm{t}_{\text {REF }}=20 \mathrm{ps} \text {, } \\
& \text { For } \theta=2.5, \mathrm{n}=8 \quad \mathrm{~W}_{\mathrm{REF}}=\mathrm{W}_{\mathrm{MIN}} \\
& \mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K} \\
& \begin{array}{c}
\text { For } \theta=2.5, \mathrm{n}=8 \quad \mathrm{~W}_{\mathrm{REF}}=\mathrm{W}_{\mathrm{MIN}} \\
\mathrm{~W}_{\mathrm{nk}}=2.5^{\mathrm{k}-1} \cdot \mathrm{~W}_{\mathrm{REF}}, \quad \mathrm{~W}_{\mathrm{pk}}=3 \cdot 2.5^{\mathrm{k}-1} \cdot \mathrm{~W}_{\mathrm{REF}}
\end{array} \\
& L_{n}=L_{p}=L_{\text {MIN }}
\end{aligned}
$$

Note devices in last stage are very large!

Optimal Driving of Capacitive Loads

Example: Design a pad driver for driving a load capacitance of 10 pF with equal rise/fall times, determine $\mathrm{t}_{\text {PROP }}$ for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter.

$$
\begin{aligned}
& \begin{array}{l}
\text { In } 0.5 \mathrm{uproc} \mathrm{t}_{\mathrm{REF}}=20 \mathrm{ps}, \\
\mathrm{C}_{\mathrm{REF}}=4 \mathrm{ff}, \mathrm{R}_{\text {PRREF }}=2.5 \mathrm{~K}
\end{array} \quad \mathrm{~W}_{\mathrm{nk}}=2.5^{\mathrm{k}-1} \cdot \mathrm{~W}_{\mathrm{REF}}, \quad \mathrm{w}_{\mathrm{pk}}=3 \cdot 2.5^{\mathrm{k}-1} \cdot \mathrm{~W}_{\mathrm{REF}} \\
\mathrm{t}_{\mathrm{PROP}} \cong & \mathrm{n} \theta \mathrm{t}_{\mathrm{REF}}=8 \cdot 2.5 \bullet \mathrm{t}_{\mathrm{REF}}=20 \mathrm{t}_{\mathrm{REF}}
\end{aligned}
$$

More accurately:

$$
\mathrm{t}_{\text {PROP }}=\mathrm{t}_{\mathrm{REF}}\left(\sum_{\mathrm{k}=1}^{7} \theta+\frac{1}{\theta^{7}} \frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\text {REF }}}\right)=\mathrm{t}_{\mathrm{REF}}\left(17.5+\frac{1}{610} 2500\right)=21.6 \mathrm{t}_{\mathrm{REF}}
$$

Optimal Driving of Capacitive Loads

More accurately:

$$
\mathrm{t}_{\text {PROP }}=\mathrm{t}_{\text {REF }}\left(\sum_{k=1}^{7} \theta+\frac{1}{\theta^{7}} \frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\text {REF }}}\right)=\mathrm{t}_{\text {REF }}\left(17.5+\frac{1}{610} 2500\right)=21.6 \mathrm{t}_{\mathrm{REF}}
$$

Possible modest improvement for determining n and θ after determining $\mathrm{n}_{\text {opt }}$:
Consider all possible combinations of θ in $\{2,2.5,3\}$ and n in $\left\{\operatorname{INT}\left(\mathrm{n}_{\text {opt }}\right), 1+\operatorname{INT}\left(\mathrm{n}_{\text {opt }}\right)\right\}$

$$
t_{\text {PROP }}(\theta, n)=t_{\text {REF }}\left(\sum_{k=1}^{n-1} \theta+\frac{1}{\theta^{n-1}} \frac{C_{L}}{C_{R E F}}\right)=t_{\text {REF }}\left((n-1) \theta+\frac{1}{\theta^{n-1}} F I_{L}\right)
$$

Optimal Driving of Capacitive Loads

Example: Design a pad driver for driving a load capacitance of 10 pF with equal rise/fall times, determine $t_{\text {PROP }}$ for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter.

$$
\begin{aligned}
& \text { In 0.5u proc } \mathrm{t}_{\mathrm{REF}}=20 \mathrm{ps}, \\
& \mathrm{C}_{\mathrm{REF}}=4 \mathrm{fF}, \mathrm{R}_{\mathrm{PDREF}}=2.5 \mathrm{~K}
\end{aligned} \quad \mathrm{~W}_{\mathrm{nk}}=2.5^{\mathrm{k}-1} \cdot \mathrm{~W}_{\mathrm{REF}}, \quad \mathrm{~W}_{\mathrm{pk}}=3 \cdot 2.5^{\mathrm{k}-1} \cdot \mathrm{~W}_{\mathrm{REF}}
$$

If driven directly with the minimum-sized reference inverter

$$
t_{\text {PROP }}=t_{R E F} \frac{C_{L}}{C_{R E F}}=2500 t_{R E F}
$$

Note an improvement in speed by a factor of approximately

$$
r=\frac{2500}{20}=125
$$

Pad Driver Size Implications

Consider a 7-stage pad driver and assume $\boldsymbol{\theta}=3$
\square : Area of Ref Inverter

Area of Last Stage Larger than that of all previous stages combined!

Propagation Delay in "Logic Effort" approaci

(Discussed in Chapter 4 of Text but definitions are not rigorous)

Logical effort

From Wikipedia, the free encyclopedia (Dec 8, 2021)
The method of logical effort, a term coined by Ivan Sutherland and Bob Sproull in 1991, is a straightforward technique used to estimate delay in a CMOS circuit. Used properly, it can aid in selection of gates for a given function (including the number of stages necessary) and sizing gates to achieve the minimum delay possible for a circuit.

Propagation Delay in "Logic Effort" approaci

(Discussed in Chapter 4 of Text but definitions are not rigorous)
Propagation delay for equal rise/fall gates was derived to be

$$
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \sum_{k=1}^{n} \frac{\mathbf{F}_{(k+1)}}{O D_{k}}
$$

Delay calculations with "logical effort" approach
Logical effort delay approach:

$$
\mathbf{t}_{\text {PROP }}=\mathrm{t}_{\text {REF }} \sum_{k=1}^{\mathrm{n}} \mathbf{f}_{\mathrm{k}} \quad \begin{aligned}
& \text { (t} \mathrm{t}_{\text {REF }} \text { scaling factor not explicitly stated in W_H } \\
& \text { textbook. As defined in W_H, } f_{k} \text { is dimensionless) }
\end{aligned}
$$

where f_{k} is the "effort delay" of stage k

$$
f_{k}=g_{k} h_{k}
$$

$\mathrm{g}_{\mathrm{k}}=$ =logical effort
$h_{k}=$ electrical effort

Propagation Delay in "Logic Effort" approach

$$
\begin{aligned}
& \quad t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} f_{k} \quad f_{k}=g_{k} h_{k} \\
& f_{k}=\text { "effort delay" of stage } k \\
& g_{k}=\text { logical effort } \\
& h_{k}=\text { electrical effort }
\end{aligned}
$$

Logic Effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter that can deliver the same output current

Electrical Effort is the ratio of the gate load capacitance to the input capacitance of a gate

Propagation Delay in "Logic Effort" approach

$$
\mathfrak{t}_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} f_{k} \quad f_{k}=g_{k} h_{k}
$$

Logic Effort (g) is the ratio of the input capacitance of a gate to the input capacitance of an inverter that can deliver the same output current

Electrical Effort (h) is the ratio of the gate load capacitance to the input capacitance of a gate

$$
g_{k}=\frac{\mathrm{C}_{\mathrm{IN}}^{\mathrm{k}}}{} \mathrm{C}_{\mathrm{REF}} \cdot \mathrm{OD}_{\mathrm{k}} \quad \quad h_{\mathrm{k}}=\frac{\mathrm{C}_{\mathrm{REF}} \cdot \mathrm{Fl}_{\mathrm{k}+1}}{\mathrm{C}_{\mathrm{IN}}}
$$

Propagation Delay in "Logic Effort" approach

$$
\begin{aligned}
& \mathbf{t}_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} f_{k} \quad f_{k}=g_{k} h_{k} \\
& g_{k}=\frac{C_{I N_{k}}}{C_{R E F} \cdot O_{k}} \quad h_{k}=\frac{C_{R E F} \bullet F_{l(k+1)}}{\mathrm{C}_{I N_{k}}}
\end{aligned}
$$

$$
\begin{aligned}
& f_{k}=\frac{F_{(k+1)}}{O D_{k}} \\
& \mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \sum_{k=1}^{n} f_{k}=\mathbf{t}_{\text {REF }} \sum_{k=1}^{n} \mathbf{g}_{k} \mathbf{h}_{\mathrm{k}}=\mathbf{t}_{\text {REF }} \sum_{k=1}^{n} \frac{\mathbf{F}_{(k+1)}}{\mathbf{F O D}_{k}}
\end{aligned}
$$

Propagation Delay in "Logic Effort" approach

$$
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \sum_{k=1}^{n} \mathbf{f}_{k}=\mathbf{t}_{\text {REF }} \sum_{k=1}^{n} \mathbf{g}_{\mathrm{k}} \mathbf{h}_{\mathrm{k}}=\mathbf{t}_{\text {REF }} \sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\boldsymbol{F}_{(k+1)}}{\mathbf{O D}}
$$

- Note this expression is identical to what we have derived previously ($\mathrm{t}_{\text {REF }}$ scaling factor not included in W_H text)
- Probably more tedious to use the "Logical Effort" approach
- Extensions to asymmetric overdrive factors may not be trivial
- Extensions to include parasitics may be tedious as well
- Logical Effort is widely used throughout the industry

Stay Safe and Stay Healthy !

End of Lecture 42

[^0]: In 0.5 u proc $\mathrm{t}_{\text {REF }}=20 \mathrm{ps}$,
 $\mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$

[^1]: Assume $\mathrm{C}_{\mathrm{L}}=1000 \mathrm{C}_{\text {REF }}$

[^2]: In 0.5 u proc $\mathrm{t}_{\text {REF }}=20 \mathrm{ps}$,
 $C_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$

[^3]: In 0.5 u proc $\mathrm{t}_{\text {REF }}=20 \mathrm{ps}$,
 $C_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$

